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Abstract: 

The purpose of this study was to estimate intertester reliability of active and passive ankle joint 

position sense measurements in uninjured subjects. Subjects were 10 males and 10 females. 

Active and passive ankle joint position sense was assessed by two testers. Each subject was 

positioned supine on a modified examination table with his or her ankle placed in 25° of plantar 

flexion. Joint position sense (JPS) measurements, on two separate occasions, were recorded in 

degrees of error from four predetermined test positions. Test order was counterbalanced 

according to mode (active/passive) and test position. Two trials were performed for each 

sequence and the average of the two was recorded for analysis. The results revealed that both the 

active and passive JPS protocols yielded poor to moderate intertester reliability. It was concluded 

that further research is needed to develop reliable protocols for testing joint position sense of the 

ankle joint. 

 

Article: 

The ankle is the most frequently injured joint in the human body, with its lateral ligamentous 

complex sustaining approximately 85% of the sprains occurring within this structure (3, 10, 13, 

14). Ankle joint injury can impose a significant disability to athletes of all sports, since athletes 

frequently experience repeated lateral ankle sprains following their initial trauma, which often 

renders them functionally unstable (6, 7). 

 

The high incidence of lateral ankle sprains and the high rate of reinjury have prompted many 

researchers to examine the possible causes for this chronic instability. Three causes of instability 

have been suggested: a decrease in muscular strength of the ankle evertors (21, 28), an increase 

in lateral ligamentous laxity (21), and proprioceptive deficits resulting from a disruption in the 

integrity of the joint mechanoreceptors (8, 9, 11, 21, 22, 28). The theory regarding proprioceptive 

deficits has recently captured the attention of many clinicians and researchers (2, 14, 15, 19, 23). 

 

Proprioception has been described by Lephart et al. as "a specialized variation of the sensory 

modality of touch [which] encompasses the sensations of joint movement (kinesthesia) and joint 

position (joint position sense)" (23). This afferent sensory feedback mechanism depends upon 

various peripheral mechanoreceptors found in the surrounding skin, muscles, tendons, ligaments, 

and joints (12). These mechanoreceptors respond to mechanical deformation by initiating action 
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potentials that are conducted to and processed by the central nervous system (12). As a result, an 

individual is able to perceive both movement (kinesthesia) and position (joint position sense) of a 

joint. 

 

Proprioception has traditionally been assessed two ways. Kinesthesia, the perception of joint 

movement, has been measured via the threshold to detection of passive motion (TTDPM) 

method (9, 21, 23). On the other hand, joint position sense has been documented as an 

individual's ability to reproduce a predetermined joint angle either actively or passively (2, 11, 

13, 14, 17, 19, 20). Both types of measurement are typically conducted in the open kinetic chain, 

yet no standardization of methods or equipment has been formally adopted. Joint position sense 

testing instruments have ranged from the mos basic standard goniometer (1, 11) to the more 

modern isokinetic dynamometers equipped with their own internal electrogoniometers, such as 

the Orthotron II (Cybex, Division of Lumex, Ronkonkoma, NY) (20), the Cybex II+ (Cybex, 

Division of Lumex, Ronkonkoma, NY) (13, 17), and the Kin-Com II (Chattecx Corporation, 

Division of Chattanooga, Hixson, TN) (2, 14). Still others have specifically designed their own 

equipment for measuring joint position sense (23). 

 

 

Unfortunately, many conclusions regarding ankle joint proprioception, as measured via joint 

position sense, have been drawn without first establishing the reliability of measurements. It is of 

the utmost importance, in sports medicine as well as in any discipline, that the reliability of 

measurements be established before any conclusions based upon these measurements can be 

deemed valid (4). To the best of our knowledge, the reliability of assessing ankle joint position 

sense has yet to be determined. Therefore, the purpose of this study was to examine the 

intertester reliability for assessing active and passive ankle joint position sense measurements in 

uninjured subjects using the Kin-Com II isokinetic dynamometer. 

 

METHODS 

Subjects 

Twenty healthy subjects (10 females and 10 males, age = 22.8 ± 3.7 years, height = 169.7 ± 9.0 

cm, weight = 67.2 ± 11.8 kg) volunteered to participate in this study. None of the subjects had a 

history of ankle sprains, and all were free from lower extremity injury at the time of the study. 

Prior to participating, each subject read and signed a human consent form approved by a 

University Committee for the Protection of Human Subjects. Subjects were randomly assigned to 

one of two testers for initial testing and subsequently returned to the sports medicine research lab 

within 9 days to be reevaluated by the other tester. 

 

Test Apparatus and Procedures 

The Kinetic Communicator II (Kin-Com II) isokinetic dynamometer was used to assess joint 

position sense. A constant velocity of 5°/s was selected as the testing speed. The subject was 

positioned supine on a modified examination table with the lower leg parallel to the floor, resting 

on a 10-in. high rectangular support (25 in. wide and 14 in. long) (Figure 1). This setup enabled 

proper placement of the subject's bare foot into the Kin-Com II ankle inversion/eversion 

apparatus with the ankle plantar flexed 25°. The ankle to be tested was randomly selected. The 

heel support of the apparatus was lined with 1/2 in. foam, and the subject's midfoot and forefoot 

were wrapped approximately three times with 1/8 in. Elastifoam wrap (low-density elastic foam) 



to decrease external sensory stimulation. After the subject's foot was properly aligned with the 

axis of the isokinetic dynamometer according to manufacturer's guidelines, stabilization was 

provided by placing Velcro straps around the proximal tibiofibular joint and forefoot (Figure 1). 

Subjects were required to close their eyes during the testing procedures to eliminate visual 

feedback. 

 

Active and passive joint repositioning occurred at the following four test positions: 10° eversion, 

0° subtalar neutral, 15° inversion, and 5° from maximum inversion. Subtalar neutral served as 

the 0° neutral position. This position was individually determined by palpating for equal 

distribution of the head of the talus bone medially and laterally while passively inverting and 

everting the foot (16). The 5° from maximum inversion test position was established by having 

the subject actively invert the foot maximally. This position was visually displayed in degrees by 

the internal goniometer of the Kin-Com II. Testing order was counterbalanced according to mode 

(active/passive) and test position (10° eversion/0° subtalar neutral, 15° inversion/5° from 

maximum inversion). The preselected testing order and side of body tested during the initial 

evaluation were replicated during the second evaluation. 

 
Prior to being tested, each subject received a practice session followed by a 30-s rest period. The 

testing began by the investigator passively moving the subject's foot through its entire inversion 

and eversion range of motion. The foot was then passively moved into the preselected test 

position where it was held for 15 s. Once at the test position, the subject concentrated on the test 

angle. The foot was then passively moved back to the starting position, which was end range of 

maximal inversion for the 0° subtalar neutral and 10° eversion test positions, and end range of 

maximal eversion for the 15° inversion and 5° from maximum inversion test positions. Once the 

starting position had been reached, the investigator proceeded to passively move the subject's 

foot back in the direction of the test position. When the subjects felt that their foot position 

replicated that of the testing angle they performed a quick contraction of the foot in the direction 

opposite the passive motion. This contraction was then recorded as a spike on the force—

velocity curve output on the Kin-Com II computer screen. From this spike on the curve, the 



investigator could then extrapolate the initial angle of movement that corresponded to the 

subject's repositioned joint angle. Joint position sense measurements were recorded in degrees of 

error from the test position. Two trials were performed for each sequence. The absolute values of 

each error score were then averaged together and recorded for analysis. Active joint position 

sense testing occurred under an identical protocol except that the subject actively moved his or 

her foot to replicate the test position after being moved to the start position. 

Statistical Analysis 

The SPSS for Windows version 6.0.1 statistical software package (SPSS Inc., Chicago, IL) was 

used to analyze the data. A three-factor repeated-measures analysis of variance was used to 

determine if any differences existed between Tester 1 and Tester 2 for joint position sense. The 

dependent variable was joint position sense, measured in degrees of error. The independent 

variables included tester (Tester 1 vs. Tester 2), mode (active vs. passive), and position (5° from 

maximum inversion vs. 15° inversion vs. 0° neutral vs. 10° eversion). If a significant F ratio (p < 

.05) was obtained, a Tukey post hoc test was utilized to determine where the differences 

occurred. In addition, separate repeated-measures analyses of variance were performed on each 

test condition. Reliability was estimated via intraclass correlation coefficients (ICC), while 

standard errors of measurement (SEM) were used to estimate the accuracy of measurement (4). 

Separate ICCs were derived from the existing separate repeated-measures ANOVA outputs using 

Shrout and Fleiss's (25) formula (2,k). SEMs were computed by multiplying the standard 

deviation of the mean degree of error score for each testing condition by the square root of 1 

minus the corresponding ICC. 

 

RESULTS 

The means and standard deviations for active and passive joint position sense (JPS) according to 

testers are shown in Table 1. The three-factor repeated- measures ANOVA revealed no 

significant main effects for tester, F(1, 19) = 0.18, p = .674; mode, F(1, 19) = 1.16, p = .295; or 

position, F(3, 57) = 0.51, p = .674. There was a significant interaction for mode by position, F(3, 

57) = testing speed. The subject was positioned supine on a modified examination table with the 

lower leg parallel to the floor, resting on a 10-in. high rectangular support (25 in. wide and 14 in. 

long) (Figure 1). This setup enabled proper placement of the subject's bare foot into the Kin-Com 

II ankle inversion/eversion apparatus with the ankle plantar flexed 25°. The ankle to be tested 

was randomly selected. The heel support of the apparatus was lined with 1/2 in. foam, and the 

subject's midfoot and forefoot were wrapped approximately three times with 1/8 in. Elastifoam 

wrap (low-density elastic foam) to decrease external sensory stimulation. After the subject's foot 

was properly aligned with the axis of the isokinetic dynamometer according to manufacturer's 

guidelines, stabilization was provided by placing Velcro straps around the proximal tibiofibular 

joint and forefoot (Figure 1). Subjects were required to close their eyes during the testing 

procedures to eliminate visual feedback. 

 

Active and passive joint repositioning occurred at the following four test positions: 10° eversion, 

0° subtalar neutral, 15° inversion, and 5° from maximum inversion. Subtalar neutral served as 

the 0° neutral position. This position was individually determined by palpating for equal 

distribution of the head of the talus bone medially and laterally while passively inverting and 

everting the foot (16). The 5° from maximum inversion test position was established by having 

the subject actively invert the foot maximally. This position was visually displayed in degrees by 

the internal goniometer of the Kin-Com II. Testing order was counterbalanced according to mode 



(active/passive) and test position (10° eversion/0° subtalar neutral, 15° inversion/5° from 

maximum inversion). The preselected testing order and side of body tested during the initial 

evaluation were replicated during the second evaluation. 

 
Prior to being tested, each subject received a practice session followed by a 30-s rest period. The 

testing began by the investigator passively moving the subject's foot through its entire inversion 

and eversion range of motion. The foot was then passively moved into the preselected test 

position where it was held for 15 s. Once at the test position, the subject concentrated on the test 

angle. The foot was then passively moved back to the starting position, which was end range of 

maximal inversion for the 0° subtalar neutral and 10° eversion test positions, and end range of 

maximal eversion for the 15° inversion and 5° from maximum inversion test positions. Once the 

starting position had been reached, the investigator proceeded to passively move the subject's 

foot back in the direction of the test position. When the subjects felt that their foot position 

replicated that of the testing angle they performed a quick contraction of the foot in the direction 

opposite the passive motion. This contraction was then recorded as a spike on the force—

velocity curve output on the Kin-Com II computer screen. From this spike on the curve, the 

investigator could then extrapolate the initial angle of movement that corresponded to subject's 

repositioned joint angle. Joint position sense measurements were recorded in degrees of error 

from the test position. Two trials were performed for each sequence. The absolute values of each 

error score were then averaged together and recorded for analysis. Active joint position sense 

testing occurred under an identical protocol except that the subject actively moved his or her foot 

to replicate the test position after being moved to the start position. 

 

Statistical Analysis 

The SPSS for Windows version 6.0.1 statistical software package (SPSS Inc., Chicago, IL) was 

used to analyze the data. A three-factor repeated-measures analysis of variance was used to 

determine if any differences existed between Tester 1 and Tester 2 for joint position sense. The 

dependent variable was joint position sense, measured in degrees of error. The independent 

variables included tester (Tester 1 vs. Tester 2), mode (active vs. passive), and position (5° from 



maximum inversion vs. 15° inversion vs. 0° neutral vs. 10° eversion). If a significant F ratio (p < 

.05) was obtained, a Tukey post hoc test was utilized to determine where the differences 

occurred. In addition, separate repeated-measures analyses of variance were performed on each 

test condition. Reliability was estimated via intraclass correlation coefficients (ICC), while 

standard errors of measurement (SEM) were used to estimate the accuracy of measurement (4). 

Separate ICCs were derived from the existing separate repeated-measures ANOVA outputs using 

Shrout and Fleiss's (25) formula (2,k). SEMs were computed by multiplying the standard 

deviation of the mean degree of error score for each testing condition by the square root of 1 

minus the corresponding ICC. 

 

RESULTS 

The means and standard deviations for active and passive joint position sense (JPS) according to 

testers are shown in Table 1. The three-factor repeated- measures ANOVA revealed no 

significant main effects for tester, F(1, 19) = 0.18, p = .674; mode, F(1, 19) = 1.16, p = .295; or 

position, F(3, 57) = 0.51, p = .674. There was a significant interaction for mode by position, F(3, 

57) = 



 

4.57, p = .006 (Figure 2). The Tukey post hoc analysis indicated that the active mode yielded 

higher joint position error scores than did the passive mode in the 5° from maximum inversion 

position (p < .05). 

 

The sampled population means and standard deviations, intraclass correlation coefficients (ICC), 

and standard errors of measurement (SEM) are presented in Table 2. The mean joint position 

error scores ranged from 6.03 to 8.06° for active JPS and 4.53 to 7.30° for passive JPS. The 

intraclass correlation coefficients (ICC 2,k) ranged from .03 to .51 and from .08 to .87 for both 

active and passive 
 

Table 2 Sample Population Means and Standard Deviations, Intraclass Correlation Coefficients (ICC), and 

Standard Error of Measurements (SEM) for Joint Position Sense Measurements (degrees) 



 

Table 3 Between-Subjects Mean Square (BMS), Error Mean Square (EMS), and Trial Mean Square (TMS) for 

Calculating Intraclass Correlation Coefficients (ICC) 

 

JPS, respectively. Corresponding standard errors of measurement ranged from 3.18 to 4.61° 

actively and 1.63 to 4.51° passively. The between-subjects mean square (BMS), error mean 

square (EMS), and trial mean square (TMS) values for calculating the ICCs are listed in Table 3. 

 

DISCUSSION 

The primary findings of our study indicated that a wide range of reliability estimates exist for 

active and passive testing conditions and that passive repositioning elicited significantly smaller 

error scores than active repositioning at the 5° from maximum inversion position. Several studies 

have produced results suggesting that passive joint position sense is significantly better (less 

calculated error) than active joint position sense (2, 13, 17). In a study investigating the effect of 

a 6-week balance and coordination training program on proprioception of functionally unstable 

ankles, Bernier's (2) control, sham, and treatment groups all exhibited significantly higher error 

scores when tested under the active mode as compared to the passive mode. In accordance with 

Bernier (2), Kaminski and Perrin (17) found that regardless of the knee brace condition, their 

subjects produced significantly less error during passive repositioning of knee joint angles as 

compared to active repositioning. 

 

Both Bernier (2) and Kaminski and Perrin (17) supported their claims based upon a previous 

study that examined the effects of chronic lateral ankle sprains on active and passive judgments 

of joint position (13). This study, conducted by Gross (13), indicated that passive judgments of 

ankle joint position were significantly better than active judgments of joint position in 

individuals free from ankle injuries. Gross (13) accounted for the increased error score associated 

with active repositioning via the theory that while joint receptors are more likely responsible for 



sensing actual joint position, muscle receptors are more reliant for detecting joint movement. 

Thus, Gross (13) hypothesized that the increased muscle afferent and efferent input during active 

repositioning was actually detrimental to sensing joint position because of possible processing 

errors. In addition, Bernier (2) suggested that the slow speed at which joint position sense was 

measured in her study (5°/s, which was also used in the present study) may have discriminated 

against muscle proprioceptors that have been believed to best sense rapid changes in joint 

movement. 

 

Contrary to these findings, our results did not reveal a significant main effect for mode, yet there 

was a significant mode by position interaction. The Tukey post hoc analysis indicated that 

passive position sense error scores (4.53 ± 4.32°) were significantly smaller than those obtained 

during the active mode (8.06 ± 5.57°) at the 5° from maximum inversion test position. This 

finding coincides with that of Bernier (2), who observed mean joint position sense scores of 4.53 

± 3.2° and 7.85 ± 5.7° for the passive and the active modes, respectively, in the 5° from 

maximum inversion position. Somewhat contradictory results were previously established by 

Glencross and Thornton (11), who reported a positive linear trend between the amount of passive 

repositioning error produced and the degree of the test angle. They found that the closer the test 

angle was to the terminal degrees of either plantar flexion or dorsiflexion, the greater the amount 

of passive repositioning error recorded (11). 

 

In both the present study and the one conducted by Bernier (2), mean joint position sense scores 

were lowest when joints were tested passively and highest when tested actively in the 5° from 

maximum inversion position. An additional factor that may account for the passive repositioning 

being less than the active at the 5° from maximum inversion position may be related to the test 

protocol used in this and other studies (2, 11, 17). That is, active repositioning following passive 

positioning may confound differing sensory inputs to the CNS. Future research should compare 

the influence of passive versus active positioning on active repositioning. 

 

Intraclass correlations make it possible to distinguish between score variances that are due to 

differences between subjects as opposed to those due to measurement error or changes in scores 

over time. In general, an ICC is a ratio of subject differences to the total score variance 

(including error variance) (27). The numerator of the formula represents the amount of variance 

accounted for between subjects on a particular measurement. If there is a relatively small 

between-subject variation, ICCs will tend to be low. Therefore, scores among a group with little 

variance, although consistent from one time to the next or one tester to another, may produce low 

ICCs (4). In our study, the four lowest ICCs were associated with the smallest between-subject 

variances (Table 3). 

 

The intertester reliability values of this study for active and passive ankle joint position sense 

testing varied considerably. The ICCs ranged from a low of .03 (SEM = 4.61°) for the active 15° 

inversion position to a high of .87 (SEM = 1.63°) for the passive 15° inversion position. Subjects' 

scores at this test position for the passive mode were much more diversified and consistent than 

the scores yielded during the active mode. This finding clearly supports Gross's (13) hypothesis 

regarding the function of joint and muscle mechanoreceptors as well as Bernier's (2) in reference 

to the slow testing speed. 

 



Reliability estimates for both active (ICC = .12, SEM = 4.17°) and passive (ICC = .14, SEM = 

4.51°) joint position sense measurements at the subtalar neutral position were very low, and 

standard errors of measurement for these conditions were relatively high. Between-subject 

variance was low in these conditions, and there was little consistency in subjects' scores between 

testers. 

 

Another factor could be the difficulty in establishing a consistent subtalar neutral position 

between testers (5, 24, 26), which would inevitably lead to the assessment of different joint 

angles by inquiring investigators. Joint position sense measurements recorded at the 10° eversion 

position produced a low to moderate reliability estimate (ICC = .70, SEM = 3.31°) for the 

passive mode and a poor reliability estimate (ICC = .50, SEM = 3.18°) for the active mode. 

Between- subject variance was highest in the passive mode, and there was a low consistency in 

scores from one tester to the next for both modes of testing. This also was true for the active 

(ICC = .51, SEM = 3.89°) and passive (ICC = .08, SEM = 4.14°) modes at the 5° from maximum 

inversion test position. Between-subject variance was relatively high in the active mode. In the 

passive mode, between- subject variance was low and subject scores were inconsistent from one 

time to the next. More specifically, some subject error scores went up while others went down. 

 

Unfortunately, to the best of our knowledge, there have been no reported reliability estimates or 

standard errors of measurement for testing ankle joint position sense. Attempting to explain the 

wide range of differences in the reliability estimates presents a challenge since no real distinctive 

pattern is portrayed. We have suggested a number of reasons why some of the correlations are so 

low. Several potential causes for the fluctuating range of reliability may lie within the actual 

experimental protocol used in this study. The assessment of the subtalar neutral joint position 

particularly warrants investigation. Intertester reliabilities for determining the subtalar neutral 

joint position in the open kinetic chain have been documented to range from ICCs (1,1) 

equivalent to .00 (SEM = 2.51°) (24) and .25 (5) for the inexperienced tester to an ICC (3,1) 

equivalent to .60 (26) for the experienced tester. Reliabilities such as these have prompted 

researchers to encourage clinicians to practice this measurement technique repeatedly before 

assessing lower extremity dysfunctions (24). Since the exact techniques used to determine 

subtalar neutral and the experience of the investigators were slightly different between the cited 

and present studies, it is difficult to render a direct comparison. But the general concern 

regarding intertester reliability of determining the subtalar neutral position remains noteworthy 

and cannot be overlooked regarding the outcome of our study. 

 

Another area of concern was the placement of the subject's foot in the Kin-Com II ankle 

inversion/eversion apparatus. An attempt was made to decrease external sensory stimulation by 

placing a foam substance around each subject's midfoot and forefoot and by also padding the 

heel support of the apparatus. Nevertheless, subjects reported isolated instances where part of 

their foot or ankle may have contacted part of the apparatus or experienced some external 

exerted pressure, especially during the active joint repositioning sequence. A second concern 

regarding the foam padding involved a compression effect exhibited between the subject's foot 

and the ankle apparatus during the active mode. It was apparent during the active tests that the 

subject's foot compressed the foam, perhaps causing the subject's foot to prematurely obtain the 

test angle in reference to the joint angle that was being recorded by the internal goniometer of the 

isokinetic testing device. This reported discrepancy in the actual and machine joint angles 



resulted in some subjects strategically overshooting what they believed to be the test position to 

compensate for this compression effect. This undoubtedly affected the reliability of these 

measures. It seems apparent that the foam padding used in our study may have caused more 

problems than it solved. Perhaps excluding the foam padding and testing subjects with their 

shoes on would help increase the stability of the foot in the testing apparatus (18) and help 

decrease the effect of external sensory stimulation. 

 

In summary, this investigation did not find a high intertester reliability for active or passive ankle 

joint position sense when employing the specific methods described. Consumers of research 

should consider the methods used for determining ankle joint position sense in the interpretation 

of a study's findings. Additional research is needed to enhance the reliable assessment of ankle 

joint position sense. 
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